300-135 assessment is more being a work oriented just one; the individuals who seem to entire this specific Cisco are in all probability to become chosen in just a so often by means of persons seeking specialised providers associated with BladeCenter technologies. All the expertise tested inside 300-135 assessment begin with mobile phone as well as fundamentals for BladeCenter as well as proceed until eventually this is trouble shooting as well as upkeep.

2017 Mar 300-135 exam cram

Q11. - (Topic 5) 

Scenario: 

A customer network engineer has edited their OSPF network configuration and now your customer is experiencing network issues. They have contacted you to resolve the issues and return the network to full functionality. 

The OSPF neighbour relationship has been lost between R1 and R3. What is causing this problem? 

A. The serial interface in R1 should be taken out of the shutdown state. 

B. A neighbor statement needs to be configured in R1 and R3 pointing at each other. 

C. The R1 network type should be changed to point-to-multipoint non-broadcast. 

D. The hello, dead and wait timers on R1 need to be reconfigured to match the values on R3. 

Answer:

Explanation: 

In order for two OSPF routers to become neighbors, they must have matching network types across the links. In this case, we see that R1 has been configured as non-broadcast and R3 is using point to point non-broadcast. 

This can be seen by issuing the "show running-config" command on each router, or the "show ip ospf interface" command: 

Topic 6, Ticket 1: Switch Port Trunk 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running 

over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Client is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

Ipconfig ----- Client will be getting 169.X.X.X 

. On ASW1 port Fa1/0/ 1 & Fa1/0/2 access port VLAN 10 was assigned which is using IP address 10.2.1.0/24 

Sh run ------- & check for running config of int fa1/0/1 & fa1/0/2 

==================================================== 

interface FastEthernet1/0/1switchport mode accessswitchport access vlan 10interface 

FastEthernet1/0/2switchport mode accessswitchport access vlan 10 

==================================================== 

. We need to check on ASW 1 trunk port the trunk Po13 & Po23 were receiving VLAN 20 & 200 but not VLAN 10 so that switch could not get DHCP IP address and was failing to reach IP address of Internet 

. Change required: On ASW1 below change is required for switch-to-switch Connectivity.. 

int range portchannel13,portchannel23 switchport trunk allowed vlan none switchport trunk allowed vlan 10,200 


Q12. - (Topic 11) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. BGP 

B. NTP 

C. IP NAT 

D. IPv4 OSPF Routing 

E. IPv4 OSPF Redistribution 

F. IPv6 OSPF Routing 

G. IPv4 layer 3 security 

Answer:

Explanation: 

On R1, we need to permit IP 209.65.200.222/30 under the access list. 


Q13. - (Topic 6) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, and FHRP services, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. In Configuration mode, using the interface port-channel 13 command, then configure switchport trunk allowed vlan none followed by switchport trunk allowed vlan 20,200 commands. 

B. In Configuration mode, using the interface port-channel 13, port-channel 23, then configure switchport trunk none allowed vlan none followed by switchport trunk allowed vlan 10,200 commands. 

C. In Configuration mode, using the interface port-channel 23 command, then configure switchport trunk allowed vlan none followed by switchport trunk allowed vlan 20,200 commands. 

D. In Configuration mode, using the interface port-channel 23, port-channel, then configure switchport trunk allowed vlan none followed by switchport trunk allowed vlan 10,20,200 commands. 

Answer:

Explanation: 

We need to allow VLANs 10 and 200 on the trunks to restore full connectivity. This can be accomplished by issuing the "switchport trunk allowed vlan 10,200" command on the port channels used as trunks in DSW1. 


Q14. - (Topic 4) 

Scenario: 

You have been asked by your customer to help resolve issues in their routed network. Their network engineer has deployed HSRP. On closer inspection HSRP doesn't appear to be operating properly and it appears there are other network problems as well. You are to provide solutions to all the network problems. 

Examine the configuration on R5. Router R5 do not see any route entries learned from R4; what could be the issue? 

A. HSRP issue between R5 and R4 

B. There is an OSPF issue between R5and R4 

C. There is a DHCP issue between R5 and R4 

D. The distribute-list configured on R5 is blocking route entries 

E. The ACL configured on R5 is blocking traffic for the subnets advertised from R4. 

Answer:

Explanation: 

If we issue the "show ip route" and "show ip ospf neighbor" commands on R5, we see that there are no learned OSPF routes and he has no OSPF neighbors. 


Q15. - (Topic 9) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. Under the BGP process, enter the bgp redistribute-internal command. 

B. Under the BGP process, bgp confederation identifier 65001command. 

C. Deleted the current BGP process and reenter all of the command using 65002 as the AS number. 

D. Under the BGP process, delete the neighbor 209.56.200.226 remote-as 65002 command and enter the neighbor 209.65.200.226 remote-as 65002 command. 

Answer:

Explanation: 

On R1 under router BGP change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002 

Topic 10, Ticket 5 : NAT ACL 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced 

during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Client is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

Ipconfig ----- Client will be receiving IP address 10.2.1.3 

. IP 10.2.1.3 will be able to ping from R4 , R3, R2, R1 

. Look for BGP Neighbourship 

Sh ip bgp summary ----- State of BGP will be in established state & will be able to receive I prefix (209.65.200.241) 

. As per troubleshooting we are able to ping ip 10.2.1.3 from R1 & BGP is also receiving prefix of webserver & we are able to ping the same from R1. Further troubleshooting needs to be done on R1 on serial 0/0/1 

. Check for running config. i.e sh run for interface serial 0/0/1.. 

From above snapshot we are able to see that IP needs to be PAT to serial 0/0/1 to reach web server IP (209.65.200.241). But in access-list of NAT IP allowed IP is 10.1.0.0/16 is allowed & need 10.2.0.0 /16 to 

. As per troubleshooting we are able to ping ip 10.2.1.3 from R1 & BGP is also receiving prefix of web server & we are able to ping the same from R1. Its should be checked further for running config of interface for stopping 

. Change required: On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. 


Leading 300-135 exams:

Q16. - (Topic 12) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 

address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

port security needs is configured on ASW1. 


Q17. - (Topic 9) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

Answer:

Explanation: 

The BGP neighbor statement is wrong on R1. 


Q18. - (Topic 12) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. NTP 

B. Switch-to-Switch Connectivity 

C. Access Vlans 

D. Port Security 

E. VLAN ACL / Port ACL 

F. Switch Virtual Interface 

Answer:

Explanation: Port security is causing the connectivity issues. On ASW1, we need to remove port-security under interface fa1/0/1 & fa1/0/2. 

Topic 13, Ticket 8 : Redistribution of EIGRP to OSPF 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Client is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

ipconfig ----- Client will be receiving IP address 10.2.1.3 

. IP 10.2.1.3 will be able to ping from R4 , but cannot ping from R3, R2, R1 

. This clearly shows problem at R4 since EIGRP is between DSW1, DSW2 & R4 and OSPF protocol is running between R4, R3, R2, R1 so routes from R4 are not propagated to R3, R2, R1 

. Since R4 is able to ping 10.2.1.3 it means that routes are received in EIGRP & same needs to be advertised in OSPF to ping from R3, R2, R1. 

. Need to check the routes are being advertised properly or not in OSPF & EIGRP vice-versa. 

. From above snap shot it clearly indicates that redistribution done in EIGRP is having problem & by default all routes are denied from ospf to EIGRP… so need to change route-map name. 

. Change required: On R4, in the redistribution of EIGRP routing protocol, we need to change name of route-map to resolve the issue. It references route-map OSPF_to_EIGRP but the actual route map is called OSPF->EIGRP. 


Q19. - (Topic 12) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. Then in exec mode clear errdisable interface fa 1/01 – 2 vlan 10 command 

B. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security, followed by shutdown, no shutdown interface configuration commands. 

C. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. 

D. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. Then in exec mode clear errdisable interface fa 1/0/1, then clear errdisable interface fa 1/0/2 commands. 

Answer:

Explanation: 

On ASW1, we need to remove port-security under interface fa1/0/1 & fa1/0/2. 

Reference: http://www.cisco.com/en/US/tech/ABC389/ABC621/technologies_tech_note09186a00806c d87b.shtml 


Q20. - (Topic 4) 

Scenario: 

You have been asked by your customer to help resolve issues in their routed network. Their network engineer has deployed HSRP. On closer inspection HSRP doesn't appear to be operating properly and it appears there are other network problems as well. You are to provide solutions to all the network problems. 

You have received notification from network monitoring system that link between R1 and R5 is down and you noticed that the active router for HSRP group 1 has not failed over to the standby router for group 1. You are required to troubleshoot and identify the issue. 

A. There is an HSRP group track command misconfiguration 

B. There is an HSRP group priority misconfiguration 

C. There is an HSRP authentication misconfiguration 

D. There is an HSRP group number mismatch 

E. This is not an HSRP issue; this is routing issue. 

Answer:

Explanation: 

When looking at the HSRP configuration of R1, we see that tracking has been enabled, but that it is not tracking the link to R5, only the link to R2: 

R1 should be tracking the Eth 0/1 link, not 0/0 to achieve the desired affect/